### Let's Talk Informatics

Discrete-Event Simulation
Daryl MacNeil P.Eng., MBA
Terry Boudreau P.Eng., B.Sc.
28 Sept. 2017

Bethune Ballroom, Halifax, Nova Scotia

Please be advised that we are currently in a controlled vendor environment for the One Person One Record project.

Please refrain from questions or discussion related to the One Person One Record project.

### Informatics...

utilizes health information and health care technology to enable patients to receive best treatment and best outcome possible.

### Clinical Informatics...

is the application of informatics and information technology to deliver health care.

AMIA. (2017, January 13). Retrieved from https://www.amia.org/applications-infomatics/clinical-informatics

# Objectives

At the conclusion of this activity, participants will be able to...

- Identify what knowledge and skills health care providers will need to use information now and in the future.
- Prepare health care providers by introducing them to concepts and local experiences in Informatics.
- Acquire knowledge to remain current with new trends, terminology, studies, data and breaking news.
- Cooperate with a network of colleagues establishing connections and leaders that will provide assistance and advice for business issues, as well as for best-practice and knowledge sharing.

# Session Objectives

- Introduction to Project Services & Performance Improvement department.
- Introduction to Discrete-Event Simulation.
- Identifying importance of Informatics to Discrete-Event Simulation.
- Presentation of simulation software with actual and sample models.

### Conflict of Interest Declaration

• I do not have an affiliation (financial or otherwise) with a pharmaceutical, medical device, health care informatics organization, or other for-profit funder of this program.

# Project Services & Performance Improvement

#### What do we do?

- Quality / process improvement
- Patient access and flow
- Clinic / service ops reviews
- Work measurement
- Facilities design
- Project management
- Simulation Modeling

## What Is Simulation?

- A system model.
- A statistically based analysis tool of a dynamic process.
- A time compression method.
- An experimentation tool for service optimization.
- An art and a science!

# How Does Simulation Relate to Health Informatics? | DALHOUSIE 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 1818 | 18

Master of Health Informatics MHI

- How health information is used in health care delivery.
- How we can better use health information to improve health care.
- How we can incorporate information technology to improve health care.

The use of discrete-event simulation supports these objectives!

### What Is Discrete-Event Simulation?

- The modeling of a system with a discrete sequence of events in time.
- Examples include:
  - > Supermarket checkouts
  - ➤ Bank teller service
  - ➤ Toll booths
  - ➤ Patient arrival at Emergency
- It is labelled as discrete-event because the arrival / queuing / servicing events are *not* continuous.

# Why Use Simulation?

- The observation and documentation of reality is too expensive, disruptive or problematic.
- An analytical solution is not feasible / too complex.
- The ability to time-compress long running events.
- The ability to experiment different scenarios.

# Simulation Software - FlexSim Healthcare (HC)



- FlexSim Healthcare is designed specifically for the unique challenges faced by today's health care facilities.
- It contains 3D visuals and graphics to observe exactly what's happening as the model is running.
- All modeling activities are derived from patient tracks.
  - > Create sequenced list of patient activities based on acuity and diagnosis as well as staff, resource and equipment requirements.
- NSHA software purchase in July 2017.















Processing Time \*\*



## **Arrival / Processing Time Collection**

- From where is the data collected?
  - ➤ Various NSHA information management systems: STAR, PHS, Millennium, HSM, EDIS, MEDITECH, etc.
- What if data is not available?
  - > Use manual data collection techniques: time studies, random sampling, etc.
  - > What we want to avoid.
- The simulation will only give accurate results if the data used is accurate!

# The Average Size Family - 2.5 Kids



# Data Requirements for Simulation Models

- Raw data is required (i.e. no averages, sums or other calculations).
- Simulation models with raw data will account for natural variations whereas models with non-raw data sets will not.





## FlexSim Model Statistics



# Steps to a Successful Simulation

- 1. Establish Goals and Objectives.
- 2. Formulate and Define Model.
- 3. Collect Data.
- 4. Build, Verify and Validate.
- 5. Experiment, Analyze and Present.

## Actual Model - DGH Emergency Triage

- According to the Canadian Triage and Acuity Scale (CTAS) standard, patients must be seen within ten minutes of arriving at the emergency department.
  - Is there in fact a risk of not meeting the standard?
  - How much additional capacity is required to mitigate this risk?
  - When does this risk occur?
- Variable of interest is patient wait time for triage.
- Test variable is *number of nurses*.
- Model input (data) is patient arrival distribution and triage time ( $\lambda$ ).

# FlexSim Model - DGH Emerg Triage



## FlexSim Model-DGH Emergency Triage



## FlexSim Model-DGH Emergency Triage



## **Model Results**



# Planning Decisions

- Is there in fact a risk of not meeting standard?
  - Yes, the model highlights there is in fact a risk.
- How much additional capacity is required mitigate this risk?
  - Requires 1-2 nurses... depending on time of day and daily patient arrival volume.
- When does this risk occur?
  - Risk can be prevalent most hours of the day depending on patient arrival volumes; however, peak times present greater risk (9:00-14:00).

| T) F    | and a different | D                                             | 0:00                                                      | 6:45           | 7:00 | 7:15 7: | 30 7:4 | 45 8:00 | 8:15  | 8:30 8 | :45 9 | :00 9  | :15 9:3 | 0 9:45         | 10:00 | 10:19 | 10:30     | 10:45    | 11:00    | 11:15            | 11:30  | 11:45          | 12:00 | 12:15 | 12:30 | 12:45 | 13:00 1             | 3:15 1 | 13:30  | 13:45 | 14:00 | 14:15           | 14:30 | 14:45 | 15:00 |  |
|---------|-----------------|-----------------------------------------------|-----------------------------------------------------------|----------------|------|---------|--------|---------|-------|--------|-------|--------|---------|----------------|-------|-------|-----------|----------|----------|------------------|--------|----------------|-------|-------|-------|-------|---------------------|--------|--------|-------|-------|-----------------|-------|-------|-------|--|
| Time    | Period Duri     | ing Day                                       | 6:45                                                      | 7:00           | 7:15 | 7:30 7: | 45 8:  | 00 8:15 | 8:30  | 8:45   | 9:00  | 9:15 9 | :30 9:  | 10:00          | 10:15 | 10:3  | 10:45     | 11:00    | 11:15    | 11:30            | 11:45  | 12:00          | 12:15 | 12:30 | 12:45 | 13:00 | 13:15               | 13:30  | 13:45  | 14:00 | 14:15 | 14:30           | 14:45 | 15:00 | 15:15 |  |
|         |                 | Patient:                                      | s                                                         |                |      |         |        |         |       |        |       |        |         |                |       | Nun   | ber of Ti | riage Nu | irses Ne | eded T           | hrough | out the l      | Day   |       |       |       |                     |        |        |       |       |                 |       |       |       |  |
|         | 0.1             | 101                                           | 1                                                         | - 1            | 1    | 1       | 1      | 1 1     | 1 1   | - 1    | 1     | 1      | 1       | 1 1            | 1     |       | 1 1       | 1        | 1        | 1                | 1      | - 1            | 1     | - 1   | - 1   | - 1   | 1                   | - 1    | - 1    | - 1   | 1     | 1               | 1     | - 1   | 1     |  |
|         | 0.2             | 106                                           | 1                                                         | - 1            | 1    | 1       | 1      | 1 1     | 1 1   | 1      | 1     | 1      | 1       | 1 1            | 1 1   |       | 1 1       | 1        | 1        | - 1              | 1      | - 1            | - 1   | - 1   | 1     | - 1   | 1                   | 1      | - 1    | - 1   | 1     | 1               | 1     | 1     | 1     |  |
|         | 0.3             | 109                                           | 1                                                         | - 1            | - 1  | 1       | 1      | 1 1     | 1 1   | 1      | 1     | 1      | 1       | 1 1            | 1 1   |       | 1 1       | 1        | 1        | - 1              | - 1    | - 1            | - 1   | - 1   | - 1   | - 1   | 1                   | 1      | - 1    | - 1   | - 1   | 1               | 1     | 1     | 1     |  |
|         | 0.4             | 113                                           | 1                                                         | - 1            | 1    | 1       | 1      | 1 1     | 1 1   | 1      | 1     | 1      | 1       | 1 1            | 1     |       | 1 1       | 1        | 1        | - 1              | - 1    | - 1            | 1     | - 1   | 1     | - 1   | 1                   | 1      | - 1    | - 1   | 1     | 1               | 1     | 1     | 1     |  |
|         | . 0.5           | 115                                           | 1                                                         | - 1            | - 1  | 1       | 1      | 1 1     | 1 1   | 1      | 1     | 1      | 1       | 1 1            | 1 1   |       | 1 1       | 1        | - 1      | - 1              | - 1    | - 1            | - 1   | - 1   | - 1   | - 1   | 1                   | 1      | - 1    | - 1   | 1     | 1               | - 1   | 1     | 1     |  |
| Percent | 0.6             | 118                                           | 1                                                         | 1              | 1    | 1       | 1      | 1 1     | 1 1   | 1      | 1     | 1      | 1       | 1 1            | 1     |       | 1 1       | 1        | - 1      | - 1              | - 1    | 1              | 1     | 1     | - 1   | - 1   | 1                   | - 1    | - 1    | - 1   | - 1   | - 1             | 1     | 1     | 1     |  |
|         | 0.7             | 122                                           | 1                                                         | - 1            | 1    | 1       | 1      | 1 1     | 1 1   | 1      | 1     | 1      | 2       | 1 1            | 1     |       | 1 1       | 2        | 1        | - 1              | - 1    | 1              | 1     | - 1   | 1     | - 1   | 1                   | 1      | - 1    | - 1   | 1     | - 1             | 1     | 1     | 1     |  |
|         | 0.8             | 126                                           | 1                                                         | - 1            | 1    | 1       | 2      | 1 1     | 1 1   | 2      | 1     | 1      | 2       | 1 2            | 2     |       | 1 2       | 2        | 1        | 2                | 2      | 1              | 2     | 2     | 1     | 1     | 2                   | - 1    | 2      | 2     | 1     | 1               | 2     | 1     | 1     |  |
|         | 0.9             | 134                                           | 1                                                         | - 1            | 2    | 2       | 2      | 2 '     | 1 1   | 2      | 2     | 2      | 2       | 2 2            | 2     |       | 2 2       | 2        | 2        | 2                | 2      | 2              | 2     | 2     | 2     | 2     | 2                   | 2      | 2      | 2     | 2     | 2               | 2     | 2     | 2     |  |
|         | 0.95            | 139                                           | - 1                                                       | 1              | 2    | 2       | 2      | 2 2     | 2     | 2      | 2     | 2      | 2       | 2 2            | 2     |       | 2 2       | 2        | 2        | 2                | 2      | 2              | 2     | 2     | 2     | 2     | 2                   | 2      | 2      | 2     | 2     | 2               | 2     | 2     | 2     |  |
|         |                 |                                               | _                                                         |                |      |         |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        |        |       |       |                 |       |       |       |  |
| _       |                 |                                               |                                                           | 1              | 1    | 1       |        | 1 40 40 | 40.00 | 40.40  |       |        |         |                |       |       |           |          |          |                  |        | 40.40          |       |       |       | -1    | -1                  |        | -1     |       |       |                 |       |       |       |  |
|         | Time Perio      | od Durin                                      | ng Dav                                                    |                | _    | _       |        |         |       |        |       |        |         | 17:45          |       |       |           |          |          |                  |        |                |       |       |       |       | 5 21:00             |        | 5 21:3 |       | 45 2  |                 |       | _     | 22:45 |  |
|         | Time Perio      |                                               |                                                           | 15:15<br>15:30 | _    | _       |        |         |       |        |       |        |         | 17:45<br>18:00 |       |       |           |          |          | 19:15 1<br>19:30 |        | 19:45<br>20:00 |       |       |       |       | 5 21:00<br>00 21:18 |        | _      |       |       | 2:00 2<br>22:15 |       |       | 22:45 |  |
|         | Time Perio      |                                               | Datients                                                  |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         | Time Perio      | 0.1                                           | Datients<br>101                                           |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         | Time Perio      | 0.1<br>0.2                                    | Patients<br>101<br>106                                    |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         | Time Perio      | 0.1<br>0.2<br>0.3                             | Datients<br>101<br>106<br>109                             |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         | Time Perio      | 0.1<br>0.2<br>0.3<br>0.4                      | 101<br>106<br>109<br>113                                  |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         |                 | 0.1<br>0.2<br>0.3<br>0.4<br>0.5               | Datients<br>101<br>106<br>109<br>113<br>115               |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         | Time Perio      | 0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6        | Patients<br>101<br>106<br>109<br>113<br>115<br>118        |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         |                 | 0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7 | Patients<br>101<br>106<br>109<br>113<br>115<br>118<br>122 |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         |                 | 0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7 | 101<br>106<br>109<br>113<br>115<br>118<br>122<br>126      |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |
|         | ercentile -     | 0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.7 | Patients<br>101<br>106<br>109<br>113<br>115<br>118<br>122 |                | _    | _       |        |         |       |        |       |        |         |                |       |       |           |          |          |                  |        |                |       |       |       |       |                     |        | _      |       |       |                 |       |       |       |  |

### Actual Model - DGH Ortho Clinic

- Currently 6 beds dedicated to Orthopedic clinic with 1 physician scheduled per day in clinic.
  - Are 6 beds required to operate clinic?
  - Can clinic be operated with less beds while maintaining high resource utilization?
  - If so, what is the number of beds that are needed?
- Variables of interest are physician utilization, patient throughput and clinic end time.
- Test variable is number of beds.
- Model input (data) is patient arrival distribution and physician appointment time ( $\lambda$ ).

## FlexSim Model - DGH Ortho Clinic



## FlexSim Model - DGH Ortho Clinic



## FlexSim Model - DGH Ortho Clinic



# Model Results (6 Beds vs. 3 Beds)

- Physician Utilization
  - 94.24% vs 94.60% Less distance traveled
- Throughput Comparison
  - No difference in number of patients are seen.
- End Time Comparison
  - 14:01 vs 14:04

With these modeling conditions (arrival distribution and appointment time), you can operate with less rooms.

# Model Takeaways

- The longer the physician appointment time, the less rooms required to maintain throughput and utilization.
- The greatest change within the clinic is where the patient spends their time waiting
  - More time in waiting room, less time waiting in exam room.

# Sample Model from FlexSim



# 2<sup>nd</sup> Sample Model from FlexSim



CASE



# BETTER DECISIONS IN THE EMERGENCY DEPARTMENT

How Baptist Health South Florida decreased Door to Provider time by 46%, optimized Staffing, and reduced Length of Stay

# 2<sup>nd</sup> Sample Model (con't)



The *Let's Talk Informatics* series meet the criteria outlined in the Manipro+ Certification guide for 1 credit by providing content aimed at improving computer skills as applied to learning and access to information.

A certificate of attendance will be sent to you to personalize, along with the link for the evaluation.

Thank you for attending today's event.

This **Group Learning** program has been certified by the College of Family Physicians of Canada and the Nova Scotia Chapter for 1 Mainpro+ credit.